首页> 外文OA文献 >Resonance interaction energy between two entangled atoms in a photonic bandgap environment
【2h】

Resonance interaction energy between two entangled atoms in a photonic bandgap environment

机译:光子中两个纠缠原子之间的共振相互作用能   带隙环境

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider the resonance interaction energy between two identical entangledatoms, one excited and the other in the ground state, interacting with thequantum electromagnetic field in the vacuum state and placed in aphotonic-bandgap environment with a quadratic dispersion relation. This problemis also strictly related to the coherent resonant energy transfer between atomsin external environments. We assume the atomic transition frequency inside thephotonic gap and near its lower edge. We consider both an isotropicthree-dimensional and a one-dimensional system. We find that the resonanceinteraction asymptotically decays faster with the distance compared to thefree-space case, specifically as $1/r^2$ compared to the $1/r$ free-spacedependence in the three-dimensional case, and as $1/r$ compared to theoscillatory dependence in free space for the one-dimensional case. Nonethelessit remains significant and much stronger than dispersion interactions betweenatoms. On the other hand, spontaneous emission is strongly suppressed by theenvironment and the correlated state is thus preserved by the spontaneous-decaydecoherence effects. A physical interpretation of this result is also discussedin detail. We conclude that our configuration is a suitable one for observingthe elusive quantum resonance interaction between entangled atoms.
机译:我们考虑了两个相同的纠缠原子之间的共振相互作用能,一个处于激发态,另一个处于基态,与处于真空状态的量子电磁场相互作用,并置于具有二次色散关系的光子带隙环境中。这个问题也与外部环境中原子之间的相干共振能量转移严格相关。我们假设原子跃迁频率在光子隙内并在其下边缘附近。我们同时考虑了各向同性的三维系统和一维系统。我们发现,与自由空间相比,共振相互作用随距离渐近衰减,特别是在三维情况下为$ 1 / r ^ 2 $与自由空间相关的$ 1 / r $相比较,而与$ 1 / r $相比对于一维情况下自由空间中的振动依赖性。尽管如此,它仍然是重要的,并且比原子之间的分散相互作用要强得多。另一方面,环境强烈抑制了自发发射,因此自发衰变相干效应保持了相关状态。还详细讨论了该结果的物理解释。我们得出的结论是,我们的构型是一种适合观察纠缠原子之间难以捉摸的量子共振相互作用的构型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号